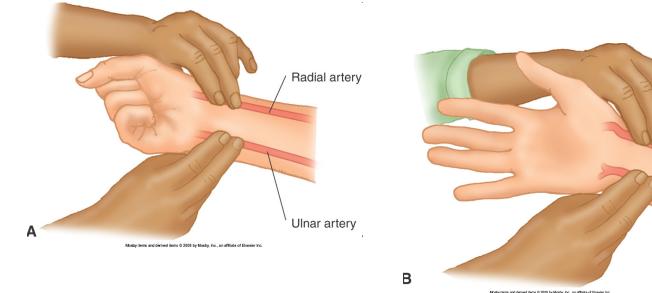
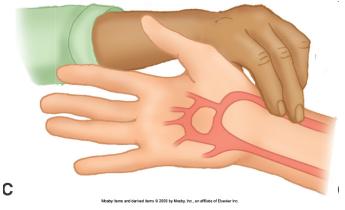
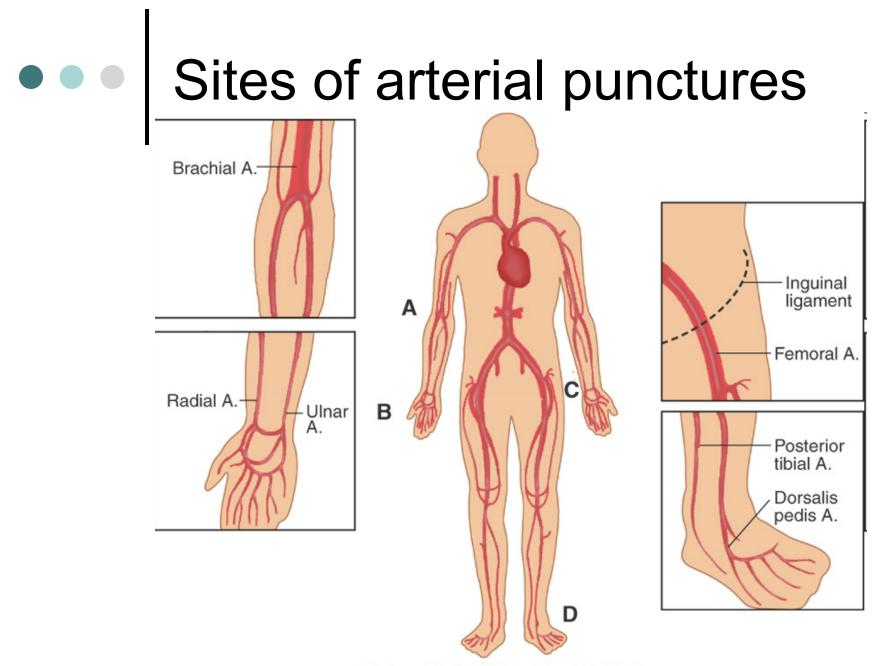

Interpretation of Blood Gases

Chapter 7

 Precise measurement of the acid-base balance of the lungs' ability to oxygenate the blood and remove excess carbon dioxide




Arterial Blood Sampling


- Analyzing arterial blood samples is an important part of diagnosing and treating patients with respiratory failure
- The radial artery is most often used because:
 - It is near the surface and easy to stabilize
 - Collateral circulation usually exists (confirmed with the modified Allen's test)
 - No large veins are near
 - Radial puncture is relatively pain free

Assessment of collateral circulation before radial artery sampling. **A**, Patient clenches fist while examiner obstructs radial and ulnar arteries. **B**, Patient gently opens hand while pressure is maintained over both arteries. **C**, Pressure over ulnar artery is released, and changes in color of patient's palm are noted. (From Wilkins RL, Stoller JK, Scanlan CL: *Egan's fundamentals of respiratory care*, ed 8, St Louis, 2003, Mosby.)

Mosby items and derived items © 2009 by Mosby, Inc., an affiliate of Elsevier Inc.

• • ABG Processing

- Obtain sample without exposure to the environment
- Air bubbles should be removed
- Store sample on ice to inhibit metabolism
- Proper care of the puncture site
- Analyzed within 1 hour with properly calibrated and maintained equipment

Indications

- Acute shortness of breath/tachypnea
- Chest pain
- Hemoptysis
- Cough, fever and sputum production consistent with pneumonia
- Headache
- Past medical history
- Abnormal breath sounds
- Cyanosis

- Heavy use of accessory muscles
- Unexplained confusion
- Evidence of chest trauma
- Severe electrolyte abnormalities
- Changes in ventilator settings
- CPR
- Abnormal chest radiograph

Acid-Base Balance
pH, PaCO₂, HCO3⁻, BE
Oxygenation Status
PaO₂, SaO₂, CaO₂, PvO₂
Adequacy of ventilation
PaCO₂

Assessment of Oxygenation

- Measurements must be evaluated to identify the quantity of oxygen transported in the blood
- Tissue oxygenation status must be determined

In the blood:

- Oxygen bound to hemoglobin: SaO₂
- o Dissolved gas in the plasma: PaO₂
- Total content of oxygen in the arterial blood: CaO₂

$\bullet \bullet \bullet | P_a O_2$

- normal values:
 75-95mmHg
- Reflects the ability of the lungs to allow the transfer of oxygen from the environment to the circulating blood
- Normal predicted values depends on:
 - Barometric pressure
 - Patient's age
 - FiO₂

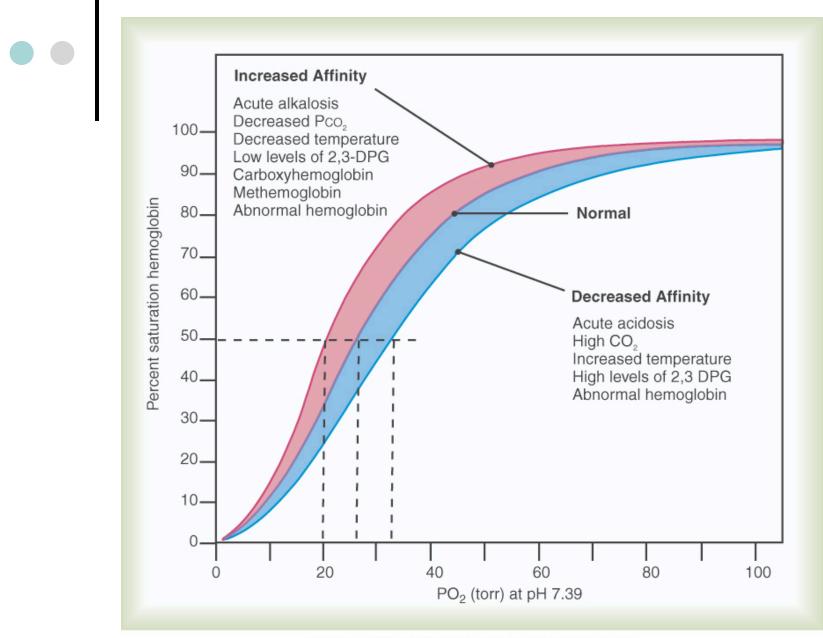
$P_{A}O_{2} = F_{i}O_{2} (P_{B} - P_{H_{2}O}) - (P_{a}CO_{2} \times 1.25)$ $P_{i}O_{2} = F_{i}O_{2} (P_{B} - P_{H_{2}O})$

HYPOXEMIAHYPOXIA

Hypoxemia

P_aO_2

- 80-100 mmHg = normal
- 60-79 mmHg = mild hypoxemia
- 40-59 mmHg = moderate hypoxemia
- <40 mmHg = severe
 hypoxemia


Causes

- V/Q mismatch
 - Mucus plugging
 - Bronchospasm
- Diffusion defects
- Hypoventilation
- Low P_iO₂

••• S_aO_2

- normal = 95-100%
- Index of the actual amount of oxygen bound to hemoglobin
- Determined from a co-oximeter

- Body temperature
- Arterial pH
- P_aCO₂
- Abnormal Hb

(Modified from Lane EE, Walker JF: Clinical arterial blood gas analysis, St Louis, 1987, Mosby.)

$\bullet \bullet \bullet O_2$

- o normal = 16-20 vol%
- Significantly influences tissue oxygenation
- (1.34 x Hb x S_aO_2) + ($P_aO_2 \times 0.003$)
- Reductions due to:
 - Anemia
 - Abnormal Hb

- Normal = 10-15 mmHg on Room Air
- Pressure difference between the alveoli and arterial blood
- Predicted normal depends on
 - Age
 - F_iO₂
- Estimate for patients on room air =

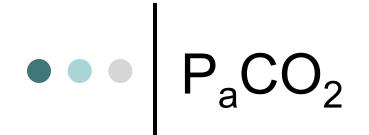
age x 0.4

- Increased gradient = respiratory defects in oxygenation ability
- Hypoxemia with a normal A-a gradient
 - Primary hyperventilation
 - High altitudes

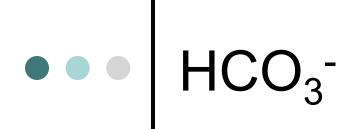
• • • P_vO_2

- Normal value 38-42 mmHg
- Indicates tissue oxygenation
- Only obtained through pulmonary artery sampling
- Value <35mmHg indicates that tissue oxygenation is less than optimal

• • • C_(a-v)O₂


- Arterio-venous oxygen difference
- Normal value 3.5-5vol%
- Increase = perfusion of the body organs is decreasing
- Decrease = tissue utilization of oxygen is impaired

Acid-Base Balance


- Lungs and kidneys excrete the metabolic acids produced in the body
- Breakdown of this process leads to acid-base disorders

• • | pH

- **o** 7.35-7.45
- Reflects the acid-base status of the arterial blood
- Majority of body functions occur optimally at 7.40, deviation from this have a profound effect on the body

- 35-45 mmHg
- Reflects the respiratory component of the acid-base status
- Hypercapnia
 - hypoventilation
- Hypocapnia
 - hyperventilation
- Best parameter for monitoring the adequacy of ventilation

- o 22-26mEq/L
- Metabolic component of the acid-base balance
- Regulated by the renal system
- Compensatory response for changes in P_aCO₂

Base Excess

- ± 2 mEq/L
- Reflects the nonrespiratory portion of acid-base balance
- Provides a more complete analysis of the metabolic buffering capabilities

- + value: base added or acid removed
- value or base deficit: acid added or base removed

pH= pK + log
$$HCO_3^-$$

P_aCO₂ x 0.03

pK = 6.1

Defines the effects of HCO_3^- and P_aCO_2 on the acid-base balance

Acid-Base Disturbances

Normal Acid-Base Balance

- Kidneys maintain HCO_3^- of ~ 24mEq/L
- Lungs maintain CO₂ of ~ 40mmHg
- Using the H-H equation produces a pH of 7.40

• Ratio of HCO_3^- to dissolved $CO_2 = 20:1$

- Increased ratio = alkalemia
- Decreased ratio = acidemia

Clinical Recognition of Acid-Base disorders

Respiratory Acidosis

- Reduction in alveolar ventilation relative to the rate of carbon dioxide production
- Inadequate ventilation
- Compensated as kidneys retain HCO₃⁻

Respiratory Alkalosis

- Increase in alveolar ventilation relative to the rate of carbon dioxide production
- Hyperventilation from an increased stimulus or drive to breathe
- Compensated as kidneys excrete HCO₃⁻

Clinical Recognition of Acid-Base disorders

Metabolic Acidosis

- Plasma HCO₃⁻ or base excess falls below normal; buffers are not produced in sufficient quantities or they are lost
- Respiratory response = Kussmauls respiration

Metabolic Alkalosis

- Elevation of the plasma HCO₃⁻ or an abnormal amount of H+ is lost from the plasma
- Tends to remain uncompensated since patient would have to hypoventilate

Compensation for Acid-Base Disorders

- Compensation occurs within the limitations of the respiratory or renal systems
- pH 7.38; P_aCO₂=85mmHg with an elevated plasma HCO₃⁻

Mixed Acid-Base Disorders

Respiratory and Metabolic Acidosis

- Elevated P_aCO₂ and reduction in HCO₃⁻ Synergistic reduction in pH
- Occurs in:
 - CPR
 - COPD and hypoxia
 - Poisoning, drug overdose

Respiratory and Metabolic Alkalosis

- Elevated plasma HCO₃⁻ and a low P_aCO₂
- Occurs due to
 - Complication of critical care
 - Ventilator induced

Acid-Base Assessment Oxygenation Assessment

Capillary Blood Gases

- Often used in infants and small children
- A good capillary sample can provide a rough estimate of arterial pH and PCO₂
- The capillary PO₂ is of no value in estimating arterial oxygenation
- The most common technical errors in capillary sampling are inadequate warming and squeezing of the puncture site

Blood Gas Analyzers

- Accurate measurements of pH, PCO₂, PO₂
- Electrodes
 - Sanz electrodes
 - Severinghaus electrodes
 - Clark electrodes
- Point of Care analyzers (POC)

Quality Assurance

- Accurate ABG results depend on rigorous quality control efforts.
 - The components of quality control are
 - Record keeping (policies and procedures)
 - Performance validation (testing a new instrument)
 - Preventative maintenance and function checks
 - Automated calibration and verification
 - Internal statistical quality control
 - External quality control (proficiency testing)
 - Remedial action (to correct errors)