
Procedural Programming

Programming Process

1. Understand the problem

2. Outline a general solution

3. Decompose the general solution into
manageable component parts

4. Develop a specific solution for each
component

5. Test the solution to each component for
correctness

6. Implement the solution to each component
in a specific programming language

Programming Process

7. Test implementation of each component

8. Assemble all of the components

9. Test the system of components

10.Document the system of components and
the user related features of the program

11.Install the program on the target system of
computer hardware and software

12.Test the program in the target environment

13.Train support personnel and users

14.Maintain and support the program

A First Example

Assume that you have been asked to
write a computer program that allows
the user to enter 2 numbers from the
keyboard, adds, subtracts, multiplies
and divides the numbers and displays
the results to the screen.

Understand the Problem

• How can you solve a problem if you
don’t know exactly what the problem
is?

• Is there anything about the problem
description that is unclear?

• Can you describe the input and output
specifically?

Outline a General Solution

Input Processing Output

2 integers

Num1

Num2

Display

instructions

Get input

Do 4 calculations

Display results

Sum

Difference

Product

Quotient

Decompose the General Solution

• Breaking a complex problem into
simpler problems is a useful problem
solving strategy.

• We’ll come back to this step when the
problems get more complex.

Develop a Specific Solution

• This is HARD because people tend to
“skip” steps that seem obvious.
Computers can’t do that.

• As an illustration, try to list the steps
that you take to brush your teeth! Did
you miss anything?

Develop a Specific Solution

ArithmeticCalculations

Display instructions

Get Num1 and Num2

Sum = Num1 + Num2

Difference = Num1 – Num2

Product = Num1 * Num2

Quotient = Num1/Num2

Display appropriate labels and Sum,
Difference, Product, Quotient

End

Test the Solution for Correctness
Input Expected Output

Num1 Num2 Sum Diff. Product Quotient

Test Data 1 10 5 15 5 50 2

Test Data 2 (Not yet tested) 2 4 6 -2 8 .5

Test the Solution for Correctness
Num1 Num2 Sum Diff. Product Quotient

ArithmeticCalculations

Display instructions

Get Num1 and Num2

Sum = Num1 + Num2

Difference = Num1 – Num2

Product = Num1 * Num2

Quotient = Num1/Num2

Display appropriate labels

and Sum, Difference, Product,

Quotient

End

Develop a Specific Solution

• Some key terminology

 Algorithm

 Pseudocode

 Variable

 Assignment statement

Another Example

Assume that you have been asked by
your local elementary school to create a
program that tells students how many
quarters, dimes, nickels and pennies
should be received as change from a
purchase under $1. The program
should allow a student to enter the
purchase price and should display the
change.

Another Example

• Follow the same process

 Can you ask clarifying questions?

 Can you create an IPO chart?

 Can you create an algorithm?

• Can you do an example?

• Can you generalize from the example?

 Does the algorithm work?

Another Example

CalculatingChange
1. Display instructions

2. Get Price

3. Change = 100 – Price

4. Display Change

5. NumQtrs = integer part of (Change/25)

6. Change = Change – NumQtrs * 25

7. NumDimes = integer part of (Change/10)

8. Change = Change – NumDimes * 10

9. NumNickels = integer part of (Change/5)

10. Change = Change – NumNickels * 5

11. NumPennies = Change

12. Display labels and NumQtrs, NumDimes, NumNickels,
NumPennies

End

Another Example
Pri

ce

Chan

ge

Num-

Qtrs

Nu

m-

Dim

es

Num

-

Nick

els

Num

-

Penn

ies

CalculatingChange

Display instructions

Get Price

Change = 100 – Price

Display Change

NumQtrs = integer part of (Change/25)

Change = Change – NumQtrs * 25

NumDimes = integer part of (Change/10)

Change = Change – NumDimes * 10

NumNickels = integer part of (Change/5)

Change = Change – NumNickels * 5

NumPennies = Change

Display labels and NumQtrs, NumDimes,

NumNickels, NumPennies

End

Practice Example

Assume that you have been asked to write
a program to determine the sales tax on an
item and display the tax and the total due
to the user. The user will enter the price
of the item in dollars and cents. The tax
rate is 5%.

Practice Example

Assume that you have been asked by a
friend, who is a beginning programming
student, to write a program that
converts 4 bit unsigned binary numbers
into the decimal equivalent.

Control Structures

• Control structures are program building
blocks that determine the order in which
statements in a program are executed

• The structure theorem states that all
programming problems can be solved by
using 3 control structures

 Sequence

 Selection

 Repetition

Selection

• Allows programs to “select” a set of
instructions to execute based on the
presence (or absence) of a condition

• Most programming languages have 2
selection statements

 If statement (if in C++)

 Case statement (switch in C++)

If Statement Example

If Price > 100 Then

Display Error Message

Else

Change = 100 – Price

Display Change

…

End if

If Statement in General

If condition Then

Statements to execute when true

Else

Statements to execute when false

End If

Selection Problem

Assume that you have been asked to
write a program to find the largest of a
set of 3 numbers. The user will enter 3
integers between 0 and 100. The
program will display appropriate
messages and display the largest of the
3 numbers.

Selection Problem

• The first 2 steps are exactly the same

 Can you ask clarifying questions to make sure you
understand the problem?

 Can you create an IPO chart to outline a general
solution?

• Start the algorithm development step the
same way too

 Can you describe in English the processing steps
that you take when you order 3 numbers?

Selection Problem

FindLargest (Version1)

1. Display instructions

2. Get Num1, Num2 and Num3

If Num1 > Num2 Then

3. Largest = Num1

Else

4. Largest = Num2

End If

If Num3 > Largest Then

5. Largest = Num3

End If

6. Display label and Largest

End

Selection Problem
FindLargest (Version 2)

Display instructions

Get Num1, Num2 and Num3

If Num1 > Num2 Then

If Num3 > Num1 Then

Largest = Num3

Else

Largest = Num1

End If

Else

If Num3 > Num2 Then

Largest = Num3

Else

Largest = Num2

End If

End If

Display label and Largest

End

Selection Problem

FindLargest (Version 3)

1. Display instructions

2. Get Num1, Num2 and Num3

3. If Num1 > Num2 and Num1 > Num3 Then
Largest = Num1

4. Else If Num1 > Num2 and Num3 > Num1 Then
Largest = Num3

5. Else If Num2 > Num1 and Num2 > Num3 Then
Largest = Num2

6. Else If Num2 > Num1 and Num3 > Num2 Then
Largest = Num3

7. End If

8. Display label and Largest

End

Selection Problem

Num

1

Num

2

Num

3

Largest

FindLargest (Test Set 3)

Display instructions

Get Num1, Num2 and Num3

If Num1 > Num2 and Num1 > Num3 Then

Largest = Num1

Else If Num1 > Num2 and Num3 > Num1 Then

Largest = Num3

Else If Num2 > Num1 and Num2 > Num3 Then

Largest = Num2

Else If Num2 > Num1 and Num3 > Num2 Then

Largest = Num3

End If

Display label and Largest

End

5 5 7

Let’s Generalize

• An if statement is a selection statement

• Many if statements look like this
If condition Then

Statements to execute when true

Else
Statements to execute when false

End If

• But, there are all kinds of “variations”
 This one doesn’t have an “else” part

If condition Then
Statements to execute when true

End If

Let’s Generalize

• But, there are all kinds of variations
 This one has more than one “else” part

If condition1 Then
Statements to execute if condition1 is true

Else If condition2 Then
Statements to execute if condition2 is true

Else If condition3 Then
Statements to execute if condition3 is true

…

Else
Statements to execute if all conditions are false

End If

Let’s Generalize

• But, there are all kinds of variations
 This one is “nested”

If condition1 Then
Statements to execute if condition1 is true

Else
If condition2 Then

Statements to execute if condition2 is true and condition
1 is false

Else

Statements to execute if condition2 is false and
condition1 is false

End If

End If

Let’s Generalize

• Conditions can be more complex too
 Most programming languages have 2

logical operators that can be used to make
compound conditions
• And

 Gender = M and Age < 25

 X > 1 and x < 10

• Or
 Gender = F or Age >= 25

 X < 1 or X > 10

Let’s Generalize

• Many programming languages have
another kind of selection statement –
the case statement

• Case Statements

 Are very different in structure and function
in different programming languages.

 You’ll see specific examples when we look
at examples of actual procedural programs.

Practice Problem

Assume that you’ve been asked to write
a program that calculates an
employee’s weekly pay. The user
enters the pay rate and the hours
worked. The program displays regular
pay, overtime pay and weekly pay.

Practice Problem

Assume that you’ve been asked to write
a program that determines the letter
grade received by a student in a course.
The total number of points in the term
is 400. Earning 90% of the points gives
students an A, 80% is a B, 70% is a C,
60% is a D and less than 60% is an F.

