Chapter 2

Objectives: to understand

- Data modeling and why data models are important
- The basic data-modeling building blocks
- What business rules are and how they influence database design
- How the major data models evolved historically
- How data models can be classified by level of abstraction

Introduction to Data Modeling

- Data modeling reduces complexities of database design
- Designers, programmers, and end users see data in different ways
- Different views of same data lead to designs that do not reflect organization’s operation
- Various degrees of data abstraction help reconcile varying views of same data

Data Modeling and Data Models

- Model: an abstraction of a real-world object or event
 - Useful in understanding complexities of the real-world environment
- Data models
 - Relatively simple representations of complex real-world data structures
 - Often graphical
- Creating a Data model is iterative and progressive

The Importance of Data Models

- Facilitate interaction among the designer, the applications programmer, and the end user
- End users have different views and needs for data
- Data model organizes data for various users
- Data model is a conceptual model - an abstraction
- It’s a graphical collection of logical constructs representing the data structure and relationships within the database.
 - Cannot draw required data out of the data model
 - An implementation model would represent how the data are represented in the database.
Data Model Basic Building Blocks

Terminology

- **Entity**: anything about which data are to be collected and stored
- **Attribute**: a characteristic of an entity
- **Relationship**: describes an association among entities
 - One-to-many (1:M) relationship
 - Many-to-many (M:N or M:M) relationship
 - One-to-one (1:1) relationship
- **Constraint**: a restriction placed on the data

Business Rules

- Descriptions of policies or principles within an organization
- Description of operations or procedures, to create/enforce actions within an organization’s environment
 - Must be in writing and kept up to date
 - Must be easy to understand and widely disseminated
 - Sometimes externally defined, i.e. government regulations.
- These describe characteristics of data as viewed by the company

Discovering Business Rules

- Sources of business rules:
 - Company managers
 - Policy makers
 - Department managers
 - Written documentation
 - Procedures
 - Standards
 - Operations manuals
 - Direct interviews with end users
- Always verify sources of information

Importance of Business Rules

- Standardize company’s view of data
- Useful as a communications tool between users and designers
- Allows the designer to
 - understand the nature, role, and scope of data
 - understand business processes
 - develop appropriate relationship participation rules and constraints
- Promotes the creation of an accurate data model
Translating Business Rules into Data Model Components

- Generally, nouns translate into entities
- Verbs translate into relationships among entities
- Relationships are bidirectional
- Two questions to identify the relationship type:
 - How many instances of B are related to one instance of A?
 - How many instances of A are related to one instance of B?

Naming Conventions

- Naming occurs during translation of business rules to data model components
- Names should make the object unique and distinguishable from other objects
- Names should also be descriptive of objects in the environment and be familiar to users
- Proper naming:
 - Facilitates communication between parties
 - Promotes self-documentation

Evolution of Data Implementation Models

- Hierarchical
 - Logically represented by an upside down tree
 - Each parent can have many children
 - Each child has only one parent
- Network
- Relational
- Object oriented
- Hybrid, XML

The Hierarchical Model

- The hierarchical model was developed in the 1960s to manage large amounts of data for manufacturing projects
- Basic logical structure is represented by an upside-down "tree"
- Hierarchical structure contains levels or segments
 - Segment analogous to a record type
 - Set of one-to-many relationships between segments
- Example – manufacturing a car from components (a,b,or c), each made of subassemblies (1,2,or 3), each having parts (x,y,&z) ...(tree structure)
Hierarchical Structure

- Each parent can have many children
- Each child has only one parent
- Tree is defined by path that traces parent segments to child segments, beginning from the left
- Hierarchical path
 - Ordered sequencing of segments tracing hierarchical structure
- Preorder traversal or hierarchic sequence
 - "Left-list" path

The Hierarchical Model

- GUAM (Generalized Update Access Method)
 - Based on the recognition that the many smaller parts would come together as components of still larger components
- Information Management System (IMS)
 - World’s leading mainframe hierarchical database system in the 1970s and early 1980s
- TCDMS/ADABAS – jointly developed by IBM and Lane County

- Advantages
 - Conceptual simplicity
 - Database security
 - Data independence
 - Database integrity
 - Efficiency

- Disadvantages
 - Complex implementation
 - Difficult to manage
 - Lacks structural independence
 - Complex applications programming and use
 - Implementation limitations
 - Lack of standards
The Network Model

- The network model was created to represent complex data relationships more effectively than the hierarchical model
 - Improves database performance
 - Imposes a database standard
 - Represents complex data relationships more effectively – such as child w/ multiple parents
- Conference on Data Systems Languages (CODASYL)
- American National Standards Institute (ANSI)
- Database Task Group (DBTG)

The Network Model Components

- Concepts still used today:
 - Schema: Conceptual organization of entire database as viewed by the database administrator
 - Subschema: Database portion "seen" by the application programs
 - Data management language (DML): Defines the environment in which data can be managed
 - Data definition language (DDL): Enables the administrator to define the schema components

The Network Model

- Collection of records in 1:M relationships
- A Set is a relationship and composed of two record types:
 - Owner: Equivalent to the hierarchical model's parent
 - Member: Equivalent to the hierarchical model's child

The Network Model

- Advantages:
 - Conformance to standards
 - Handled more relationship types
 - Data access flexibility
- Disadvantages of the network model:
 - System complexity
 - Lack of ad hoc query capability placed burden on programmers to generate code for reports
 - Structural change in the database could produce havoc in all application programs
The Relational Model

- Developed by E.F. Codd (IBM) in 1970
- Relational models were considered impractical in the 1970’s.
- Model was conceptually simple at expense of computer overhead
- Relational table is purely logical structure
 - How data are physically stored in the database is of no concern to the user or the designer
 - This concept is the source of a real database revolution

Relational Table

- A Relational table is a purely logical structure
 - How data are physically stored in the database is of no concern to the user or the designer.
- Stores a collection of related entities
 - Resembles a file
- Table (relations)
 - Matrix consisting of a series of row/column intersections
 - Each row in a relation is called a tuple
 - Related to each other by sharing a common entity characteristic

The Relational Model Components

- Relational data management system (RDBMS)
 - Performs same functions provided by hierarchical model, but hides complexity from the user
- Relational schema/diagram
 - Visual representation of relational database’s entities, attributes within those entities, and relationships between those entities
- Relational diagram
 - Representation of entities, attributes, and relationships
- Relational table stores collection of related entities.
The Relational DBMS Application

- SQL-based relational database application involves three parts:
 - User interface
 - Allows end user to interact with the data
 - Set of tables stored in the database
 - Each table is independent from another
 - Rows in different tables are related based on common values in common attributes
 - SQL “engine”
 - Executes all queries

The Relational Implementation Model

- Advantages
 - Structural independence
 - Improved conceptual simplicity
 - Easier database design, implementation, management, and use
 - Ad hoc query capability (SQL)
 - Powerful database management system

- Disadvantages
 - Substantial hardware and system software overhead
 - Can facilitate poor design and implementation
 - May promote “islands of information” problems

Logical/Conceptual Model

The Entity Relationship Model

- Widely accepted standard for data modeling
- Introduced by Chen in 1976
- Graphical representation of entities and their relationships in a database structure
- Entity relationship diagram (ERD)
 - Uses graphic representations to model database components
 - Entity is mapped to a relational table

The Entity Relationship Model

- Entity instance (or occurrence) is row in table
- Entity set is collection of like entities
- Connectivity labels types of relationships
- Relationships are expressed using Chen notation
 - Relationships are represented by a diamond
 - Relationship name is written inside the diamond
- Crow’s Foot notation used as design standard in this book
The Object-Oriented (OO) Model

- An Object is the logical abstraction or basic building block for autonomous structures
 - Attributes describe the properties of an object
 - Objects that share similar characteristics are grouped in classes
 - Classes are organized in a class hierarchy
 - Inheritance: an object inherits methods and attributes of parent class
 - UML - Unified Modeling Language is used to graphically model a system
 - based on OO concepts that describe diagrams and symbols

Logical/Conceptual Model
The Object-Oriented (OO) Model

- Models both data and relationships contained in a single structure known as an object
- OODM (object-oriented data model) is the basis for OO-DBMS (Semantic data model)
- An object is described by its factual content:
 - Are self-contained: a basic building block for autonomous structures
 - Is an abstraction of a real-world entity
 - Contains information about relationships between facts within the object and with other objects.
Logical Models: Object Oriented Model

- Advantages
 - Adds semantic content
 - Visual presentation includes semantic content
 - Database integrity
 - Both structural and data independence

- Disadvantages
 - Slow pace of OODM standards development
 - Complex navigational data access
 - Steep learning curve
 - High system overhead slows transactions
 - Lack of market penetration

Newer Data Models: Object/Relational

- Extended relational data model (ERDM)
 - Semantic data model developed in response to increasing complexity of applications
 - Includes many of OO model's best features
 - Often described as an object/relational database management system (O/RDBMS)
 - Primarily geared to business applications

Newer Data Models: XML

- The Internet revolution created the potential to exchange critical business information
- Dominance of Web has resulted in growing need to manage unstructured information
- In this environment, Extensible Markup Language (XML) emerged as the de facto standard
- Current databases support XML
 - XML: the standard protocol for data exchange among systems and Internet services

The Future of Data Models

- Hybrid DBMSs
 - Retain advantages of relational model
 - Provide object-oriented view of the underlying data
- SQL data services – ‘Cloud Computing’
 - Store data remotely without incurring expensive hardware, software, and personnel costs
 - Companies operate on a “pay-as-you-go” system
The Development of Data Models

Data Models: A Summary

- Each new data model capitalized on the shortcomings of previous models
- Common characteristics:
 - Conceptual simplicity with semantic completeness
 - Represent the real world as closely as possible
 - Real-world transformations (behavior) must comply with consistency and integrity characteristics
- Some models better suited for some tasks
The External Model

- End users’ view of the data environment
- Requires that the modeler subdivide set of requirements and constraints into functional modules that can be examined within the framework of their external models
- Advantages:
 - Easy to identify specific requirements to support each business unit’s operations
 - Facilitates designer’s job by providing feedback about the model’s adequacy
 - Ensures security constraints in database design
 - Simplifies application program development

The SPARC Conceptual Model

- Represents global view of the entire database
 - All external views integrated into single global view: conceptual schema
- Representation of data as viewed by high-level managers
- ER Diagram graphically represents the conceptual schema
 - ER model most widely used conceptual model
- Basis for identification and description of main data objects, avoiding details

The Conceptual Model

Advantages

- Provides a relatively easily understood macro level view of data environment
- Independent of both software and hardware
 - Does not depend on the DBMS software used to implement the model
 - Does not depend on the hardware used in the implementation of the model
 - Changes in hardware or software or do not affect database design at the conceptual level
The SPARC Internal Model

- Representation of the database as “seen” by the DBMS
 - Maps the Conceptual model to the DBMS
- Internal schema depicts a specific representation of an internal model
- Depends on specific database software
 - Change in DBMS software requires internal model be changed
- Logical independence: change internal model without affecting conceptual model

The Physical Model

- Operates at lowest level of abstraction
 - Describes the way data are saved on storage media such as disks or tapes
 - Software and hardware dependent
- Requires the definition of physical storage and data access methods
- Relational model aimed at logical level
 - Does not require physical-level details
- Physical independence: changes in physical model do not affect internal model

Summary

- A data model is an abstraction of a complex real-world data environment
- Basic data modeling components:
 - Entities
 - Attributes
 - Relationships
 - Constraints
- Business rules identify and define basic modeling components
Summary

- Hierarchical model
 - Set of one-to-many (1:M) relationships between a parent and its children segments
- Network data model
 - Uses sets to represent 1:M relationships between record types
- Relational model
 - Current database implementation standard
 - ER model is a tool for data modeling
 - Complements relational model

Summary

- Object-oriented data model: object is basic modeling structure
- Relational model adopted object-oriented extensions: extended relational data model (ERDM)
- OO data models depicted using UML
- Data-modeling requirements are a function of different data views and abstraction levels
 - Three SPARC abstraction levels: external, conceptual, internal