Techniques Utilized in Rehabilitation

Joint Mobilization

“Joint Mobs”
- Manual therapy technique
- Used to modulate pain
- Used to increase ROM
- Used to treat joint dysfunctions that limit ROM by specifically addressing altered joint mechanics

Factors that may alter joint mechanics:
- Pain & Muscle guarding
- Joint hypomobility
- Joint effusion
- Contractures or adhesions in the joint capsules or supporting ligaments
- Malalignment or subluxation of bony surfaces

Should joint mobilizations be performed on someone who has a hypermobile joint?

Mobilization – passive joint movement for increasing ROM or decreasing pain
- Applied to joints & related soft tissues at varying speeds & amplitudes using physiologic or accessory motions
- Force is light enough that patient’s can stop the movement

Manipulation – passive joint movement for increasing joint mobility
- Incorporates a sudden, forceful thrust that is beyond the patient’s control

Self-Mobilization (Automobilization) – self-stretching techniques that specifically use joint traction or glides that direct the stretch force to the joint capsule

Mobilization with Movement (MWM) – concurrent application of a sustained accessory mobilization applied by a clinician & an active physiologic movement to end range applied by the patient
- Applied in a pain-free direction

Terminology

- **Physiologic Movements** – movements done voluntarily
 - Osteokinematics – motions of the bones

- **Accessory Movements** – movements within the joint & surrounding tissues that are necessary for normal ROM, but can not be voluntarily performed
 - Component motions – motions that accompany active motion, but are not under voluntary control
 - Ex: Upward rotation of scapula & rotation of clavicle that occur with shoulder flexion
 - Joint play – motions that occur within the joint
 - Determined by joint capsule’s laxity
 - Can be demonstrated passively, but not performed actively
Terminology

- **Arthrokinematics** – motions of bone surfaces within the joint
 - 5 motions - Roll, Slide, Spin, Compression, Distraction

- **Muscle energy** – use an active contraction of deep muscles that attach near the joint & whose line of pull can cause the desired accessory motion
 - Clinician stabilizes segment on which the distal aspect of the muscle attaches; command for an isometric contraction of the muscle is given, which causes the accessory movement of the joint

- **Thrust** – high-velocity, short-amplitude motion that the patient can not prevent
 - Performed at end of pathologic limit of the joint (snap adhesions, stimulate joint receptors)
 - Techniques that are beyond the scope of our practice!

- **Concave** – hollowed or rounded inward

- **Convex** – curved or rounded outward

Relationship Between Physiological & Accessory Motion

- **Biomechanics of joint motion**
 - **Physiological motion**
 - Result of concentric or eccentric active muscle contractions
 - Bones moving about an axis or through flexion, extension, abduction, adduction or rotation
 - **Accessory Motion**
 - Motion of articular surfaces relative to one another
 - Generally associated with physiological movement
 - Necessary for full range of physiological motion to occur
 - Ligament & joint capsule involvement in motion

- **Compression** –
 - Decrease in space between two joint surfaces
 - Adds stability to a joint
 - Normal reaction of a joint to muscle contraction

- **Distraction** –
 - Two surfaces are pulled apart
 - Often used in combination with joint mobilizations to increase stretch of capsule.

Effects of Joint Mobilization

- **Neurophysiological effects** –
 - Stimulates mechanoreceptors to pain
 - Affect muscle spasm & muscle guarding – receptive stimulation
 - Increase in awareness of position & motion because of afferent nerve impulses

- **Nutritional effects** –
 - Distraction or small gliding movements – cause synovial fluid movement
 - Movement can improve nutrient exchange due to joint swelling & immobilization

- **Mechanical effects** –
 - Improve mobility of hypomobile joints (adhesions & thickened CT from immobilization – loose)
 - Maintains extensibility & tensile strength of articular tissues

- **Cracking noise may sometimes occur**

Contraindications for Mobilization

- **Should not be used haphazardly**

- **Avoid the following:**
 - Inflammatory arthritis
 - Malignancy
 - Tuberculosis
 - Osteoporosis
 - Ligamentous rupture
 - Herniated disks with nerve compression
 - Bone disease

- **Neurological involvement**
- Bone fracture
- Congenital bone deformities
- Vascular disorders
- Joint effusion
 - May use I & II mobilizations to relieve pain
Precautions

- Osteoarthritis
- Pregnancy
- Flu
- Total joint replacement
- Severe scoliosis
- Poor general health
- Patient’s inability to relax

Maitland Joint Mobilization Grading Scale

- Grading based on amplitude of movement & where within available ROM the force is applied.
- Grade I
 - Small amplitude rhythmic oscillating movement at the beginning of range of movement
 - Manage pain and spasm
- Grade II
 - Large amplitude rhythmic oscillating movement within midrange of movement
 - Manage pain and spasm
- Grades I & II – often used before & after treatment with grades III & IV

Indications for Mobilization

- Grades I and II - primarily used for pain
 - Pain must be treated prior to stiffness
 - Painful conditions can be treated daily
 - Small amplitude oscillations stimulate mechanoreceptors - limit pain perception
- Grades III and IV - primarily used to increase motion

Joint Positions

- Resting position
 - Maximum joint play - position in which joint capsule and ligaments are most relaxed
 - Evaluation and treatment position utilized with hypomobile joints
- Loose-packed position
 - Articulating surfaces are maximally separated
 - Joint will exhibit greatest amount of joint play
 - Position used for both traction and joint mobilization
- Close-packed position
 - Joint surfaces are in maximal contact to each other
- General rule: Extremes of joint motion are close-packed, & midrange positions are loose-packed.