GAME MAKER TRICKS

© 2009 PAUL KNICKERBOCKER FOR LANE COMMUNITY COLLEGE

In this tutorial we will play with some of useful things inside of Game Maker that we haven’t
dealt with yet, and some tips on how to handle some common activities inside game maker.

MOUSE INTERFACE

Handling the mouse is relatively easy in Game Maker because of the access to 2 very
important system variables:

* mouse_x
e mouse_y

As you can probably guess, these variables allow you to know the X and Y coordinates of the
mouse in the room at all times. Once you have the (X,Y) you can use conditionals to find the
type of object and take action accordingly.

In combination with the X and Y is a collection of events under the Mouse (|E) Mouse E|)
heading that have to do with clicking the individual buttons, scrolling the mouse wheel and
the mouse entering and exiting the object. All the standard mouse events listed apply when
the mouse is over the object, so a left click event deals with the mouse clicking ON the
object only.

If you want to use the events anytime they happen, use Global Mouse (' Slabalmause *)
events at the bottom. These events will fire whenever the buttons are pressed, regardless of
which object it is over.

A quick example on how to use the mouse is by modifying Vacuum Marauders V 5.0 into a
Defender type game. First we draw our own cursor on the screen using the Draw event in the

controller and adding a Draw Sprite (E) action with Sprite = “sprite_shot2” at X =
“mouse_x", and Y = “mouse_y” (with relative off):

Draw Sprite

Applies to
(*) Self
() Other
() Object;

sprite: | sprite_shat2 E
X | MOuUse_x
o mauze Y

subimage: | -1

[fielative
Z

We handle this in the controller because mouse movement is independent from any other
object in the game.

Now we can place the destructive explosions anyplace on the screen by adding a Global

Mouse Left Button event that has a Create Instance (L) action with Object =
“object_exp_hurt” @ (“mouse_x”, “mouse_y”) (relative off). Now you should have a missle
cursor and the ability to place explosions:

o SE

Notice on our game that you can keep creating explosions as long as you hold down the left
button, this is because our left key event is like the keyboard event, it happens on every step
the button is pressed. There are “pressed” events for the mouse that act like the “key press”
event for keyboards.

You will also see Joystick events under the Mouse heading; these tie into the joysticks set up
under Windows. There are events for the simple actions like pressing a button, but most of
the advanced input for analog controls is handled through functions. Consult Game Maker help
for more on joysticks.

ALARMS

We have dealt with timelines to handle things at a particular moment in time, but there is a
much more flexible way to time things that allows a lot more flexibility: Alarms. Alarms are
basically events that are put off until a certain time in the future. You set an alarm, give it
the number of steps to wait before going off, then define in a separate Alarm event the series
of actions to take. Alarms are bound to individual objects and you can set up to 12 alarms
(numbered AlarmO to Alarm11), each whit their own set of actions.

Take the point in Temple of Locks where we pause the screen at the end so the player can

ks

revel in their achievement, we use the Sleep action () to pause the game but we can just

as easily use an alarm. Remove all the events from Create and add in a Set Alarm (o , in
main 2 tab) for Steps = 60 and Alarm = Alarm 0, (Relative off):

Set Alarm
- Applies bo
() Selt
O Other
) Object;
nurnber of steps: | B0
in alarmn no; | Alarm O B
|:| Relative
0K ¥ Cancel

This will set AlarmO0 to go off in 60 steps (- 2 seconds at standard game speed). In this case,
Relative can be used to add time to an alarm that is already set. The Alarm system in Game
Maker works a lot like the timer that we used to kill the player if they don’t get to the exit in
time in Temple of Locks.

Now we will define what the alarm will do by adding a Alarm event (l 2 Alarm I) to the
object set for AlarmO:

D e alamo

5 Ster alarr 1

————— BAlarm 2z

This event will fire when the timer for AlarmO0 goes off in 60 steps. Add in a Show Highscore
and Rest Game to the new event and you should have a system that works just as before:

Eventz: Actions:

, Create Show the highszore table
<y Alarm 0

'—j S IEI Restart the game

The advantage of this approach is that Sleep freezes all action in the game, while an alarms
allows us to do other things while we are waiting, like playing a sound effect or animating an
image.

GAME INFORMATION AND SETTINGS

We have focused a lot on the internals of making games, but Game Maker allows us some
“polish” for controlling some of the high-level game aspects. These are down at the bottom
of the resource list:

+-) Aooms
li] Game Information
4| Global Game Settings
|#] Extension Packages

Game Information is a useful place to put documentation about the game for the user and
about the development of the game. This is roughly equivalent to the Help function in most
games. | provides a simplistic word processor to put down all the long (yet important) parts of
your game like citing the people that helped develop the game:

Ay SE <]
e e romet

|v & % o S s msy mwa mES

Game information is a great place to put help on functionality in the game. This information
)

can then be displayed in its entirety using the Show Info action (, in main2 tab). For

shorter informational messages, Display Message (~ , in main2 tab) is another good choice.

Global Game Settings controls a lot of the external aspects of the game that give it a more
professional look:

|4/ Global Game Settings

Graphics | Resolution | Other | Loading | Constants | Include | Enors | Info

[Start in full-zzreen mode

Scaling
() Fired scale (in %) 100

(%) Keep aspect ratio
O Full scale

[interpolate colors between pivels

Color outside e roomm region: _
[&llowe the: playes to resize the game windav
[C] Let the game window always stay on top

] Dan't diaw a border in windowed mode

[Dan't shaw the buttans in the window caption
Display the cursar

[Fieeze the game when the form looses focus

Zn

There are a lot of settings in here and most of them are self-explanatory, but here is a
summary of what is in each tab:

Graphics: This deals with some of the more subtle aspects of doing graphics in the
game and effect visual performance. It can make full screen the default and control
how the window containing the game is displayed.

Resolution: Used to force a certain resolution on the screen when playing the game.
Other: Binds Hotkeys to certain functions, allows for setting game process scheduling
priority and setting version and copyright information.

Loading: Controls the icon displayed with the game’s executable and the look (or
presence of) the loading bar when the game starts up.

Constants: Allows you to add in custom global variables with a fixed value for use
anywhere inside the game (i.e. CLUSTER_BOMB = 3)

Include: Part of the Pro edition - used when plugging in extension packages.

Errors: Handles how deal with errors, also allows for automatically initializing all
variables to 0 to avoid errors with uninitialized variables.

Info: Additional information that can be bound to the executable to be seen in the file
information.

PERSISTANCE

One of the boxes you will notice on the objects and rooms is Persistent:

Yizible [] 5alid
Depth: |0
[] Persiztent

This controls whether an object or room maintains its state during room transitions. If we
take Temple of Locks as an example, each time we move to a new room the value of all our
custom variables (like object_controller.timer and object_exit.locked) are reset. As soon as a
room loads all the objects manually placed in that room execute their Create events as
though this is their first time popping into existence. This is fine when each room is kind of a
separate game, but what if we want the player to track certain things between rooms?

Persistent allows us to keep the state of the object or room between room transitions. So if
we want to use our rooms to act as a subsection of a larger map, we would check the
Persistent button on our rooms. Persistence in rooms make any changes to the room (like the
number of enemies) made during gameplay stick around after we move to another room. So if
our room is persistent we could kill all the enemies in it, go to another room, and when we
come back all the enemies will still be dead.

With objects, Persistent keeps all the custom variables intact. So if you wanted to keep the
ammo gained from another room around for the next one, you would make the object
Persistent and room transitions wouldn’t affect the variable tracking ammo.

MERGING GAMES

When multiple people are working on a project in a group, combining their work together can
be a logistical nightmare. The best way to avoid problems related to integrating code is using
a solid design plan, but even then problems still arise. Professional development houses spend
a large amount of time and effort making sure that their code management system is working

correctly and effectively.

Game Maker has a much simpler system for integrating code which makes for less integration
problems, but more manual configuration to get it to work. To merge a game, go into File

and select Merge Game ...:

Select the game to merge and hit OK. You won’t see anything happen directly, but you will
find a new folder with the same name of the file you imported in many of you resources:

File Edit Resources Scripts

L] Mew Chrl+i
j Qpen... Chrl+0

Recent Files L4
H Save Chrl+s
G Save As...

O Create Executatle...

Talal

&} Publish your Game. ..

%‘ Merge Game. ..

v Advanced Mode
[}' Preferences...

@) Exit

=I-{—= Objects

&

object_player
ohject_exp
ohject_exp_player
object_controller

' object_shat

ohject_enemy
object_snemy2

Qi object_enemy3

J
]

| -

ohject_fireball
object_fireball_seck

plaver

4 obl_exp

4 obl_exp_ship
obj_contraler

' abi_shat

A obi shot dril

ob]_enemyi

obj_enemy_parent

obj_enemp?

obj_enemp3

obl_enemy_shot

obj_enemy_secker

obj_exp_hurt

object_shot_bomb

[

Alt-+F4

=l Sprites
& sprite_player
& sprite_plaver_lives
& sprite_exp
 zprite_shat]
zprite_enemyl
m zprite_enemy
A spiite_enemy3
J sprite_fireballt
{J zprite_fireball2
=1 wm_d

i

zprite_zhip
sprite_exp

T sprite_shot1

IS o

=

zprite_zhot2
zprite_enemyl
sprite_enerny?
sprite_enermny3
zprite_fireballl
zprite_fireball2
zprite_zmall_ship

This is basically all merge does - it imports all the object, resources and code from another
game into your game. The folder keeps things the imported data separate from the regular
game and keeps resources with the same name from being confused (“sprite_exp” is different
from “vm_4/sprite_exp”). From here it is up to you to grab and modify whatever code you

want from the merged game by using cut and paste, or replacing your own objects with the
new object.

If you are going to use the new objects, make sure you go through them and change all their
references to other resources, since they won’t be referring to any of the original resources in
the game.

