OXYGENATION AND ACID-BASE EVALUATION Chapter 1

MECHANICAL VENTILATION

- Used when patients are unable to sustain the level of ventilation necessary to maintain the gas exchange functions
- Artificial support of lung function
- The Roman physician Galen may have been the first to describe mechanical ventilation: "If you take a dead animal and blow air through its larynx [through a reed], you will fill its bronchi and watch its lungs attain the greatest distention."
- Andreas Vesalius (founder of modern human anatomy) also describes ventilation by inserting a reed or cane into the trachea of animals..

INDICATIONS

- Ventilatory Failure
- Oxygenation Failure
- Failure of both oxygenation and ventilation
- Pathophysiological Factors
 - Increased airway resistance
 - Changes in lung compliance
 - Hypoventilation
 - V/Q mismatch
 - Intrapulmonary shunting
 - Diffusion defect

VENTILATION DELIVERY

- Performed by:
 - Hand

Machine

- Available for:
 - Short term
 - Long term
 - Acute care
 - Extended home care
- Interface
 - ETT
 - Tracheostomy
 - Mask
 - LMA

GAS EXCHANGE

ARTERIAL BLOOD GAS REVIEW

- Provides valuable information about a patient's oxygenation, ventilation, and acid-base status
- Vital part of the assessment and management of a mechanically ventilated patient
- Should be used with caution represents one point in time
- A series of ABG results should be compared to see if "trends" are present
- Avoid excessive or curiosity sampling
- Interpretation in the context of the clinical setting/ patient status

OXYGENATION

- o PaO₂
- \circ SaO₂
- \circ CaO $_2$
- $\circ P_{\text{(A-a)}}O_2$
- \circ PvO₂
- \circ C(a- \bar{v}) O_2
- \circ VO_2
- \circ DO₂
- ${\color{red} \circ} ~\dot{Q}s/\dot{Q}t$

CLINICAL ROUNDS 1-1

A 40 year old patient has a P(A-a)O2 of 15mmHg. Is this in the normal range for this patient?

At age 20 the normal P(A-a)O2 is about 5mmHg; it increases 4mmHg per decade. At age 40 this would represent an increase of 8mmHg or a value of 13mmHg. The value of 15 is reasonably close to normal.

LOW OXYGEN LEVELS:

- Hypoxia
 - Lower than normal oxygen pressure in the tissues or alveoli
 - Types/Causes
 - Hypoxemic
 - Anemic
 - Circulatory/stagnant
 - Histotoxic
 - Affinity

- Hypoxemia
 - Low arterial blood oxygen pressure
 - Causes
 - Hypoventilation
 - \circ Decreased PiO₂
 - Shunt
 - Diffusion defects
 - Poor distribution of ventilation

TRANSFER AND UPTAKE OF O_2 FROM THE ALVEOLI

$P_{(A-a)}O_2$:

- o ability of lungs to bring in and transfer oxygen
- Increased gradient demonstrates a decreased transfer, due to:
 - Age
 - Lung disease
 - V/Q mismatch
 - Shunt
 - Diffusion defects

TRANSFER AND UPTAKE OF O_2 FROM THE ALVEOLI

PaO_2/P_AO_2 :

- fraction of oxygen that is transferred to the artery
- Stable with changes in FiO₂
- Normal 0.9 (90%)
- Less than 75% indicates a problem

TRANSFER AND UPTAKE OF O_2 FROM THE ALVEOLI

PaO₂ /FiO₂:

- P to F ratio
- Amount of oxygen moving into the blood in relation to the inspired oxygen
- Used to describe the degree of lung injury
- o Normal 380-476mmHg
- Lower values indicate disorders
 - <200 ARDS
 - 200-300 ALI

OXYHEMOGLOBIN DISSOCIATION CURVE

- S-shaped curve,
 relationship of plasma
 PO₂ and O₂ bound to
 Hb (SO₂)
- Flat portion: minor changes in PO₂ have little effect on SO₂
 Strong Affinity!
- Steep portion: small drop in PO₂ causes a large drop in SO₂ Weak Affinity!

OXYGEN CONTENT AND OXYGEN DELIVERY

- Together these determine the amount of oxygen available for utilization at the tissues
- o Considers oxygen, hemoglobin and cardiac output
- \circ CaO2 = (1.34xHbxSaO2) + (PaO2x0.003)
- o DO2= CaO2xCO

CLINICAL ROUNDS 1-2

A patient has a measured PaO₂ of 80mmHg and an SaO₂ of 97%. The Hb is 10gm%. Does this patient have a normal oxygenation status?

Although the PaO₂ and SaO₂ are normal the low hemoglobin will cause a reduction in this patient's CaO₂. Therefore this patient does not have a normal oxygenation status.

ALVEOLAR VENTILATION

- Normal: 4-5L/min
- \circ $V_A = Vt-V_D$
- \circ $V_A = (Vt-V_D)x f$
- - Hyperventilation
- - Hypoventilation
- Alveolar air equation
- o As $PaCO_2 \uparrow by$ $1mmHg, PaO_2 \downarrow by$ 1.25mmHg

(Modified from Pilbeam SP: Mechanical ventilation, ed 4, St Louis, 2006, Mosby

CLINICAL ROUNDS 1-3

A patient has a PaO₂ of 50mmHg and a PaCO₂ of 80mmHg. If the PaCO₂ were to decrease to a normal of 40mmHg, what would you expect the PaO₂ to be after the change (assuming the PaO₂ changes were due to the PaCO₂ changes alone and not to lung pathology

A change in $PaCO_2$ from 80 to 40mmHg is a 40 mmHg difference; $40 \times 1.25 = 50$ mmHg. The PaO_2 would be expected to increase by about 50mmHg to approximately 100mmHg.

$$PaCO_2 = \frac{\dot{V}CO_2 \times 0.863}{\dot{V}_A}$$

Relationship between the amount of CO₂ produced from cellular metabolism and how well the CO₂ is removed from the lungs

HENDERSON-HASSELBALCH EQUATION

- Simplified to : $H^+ = \underline{24 \times PaCO_2}$ HCO_3^-
 - Requires knowing the hydrogen ion concentration for a given pH
- Verification of pH/PaCO₂ relationship
 - Buffers make it more difficult for the blood to become acidotic, CO₂ must increase more to change the pH than compared to how much it decreases to raise the pH

CLINICAL ROUNDS 1-4

A patient has a PaCO₂ of 78mmHg and a pH of 7.20. What would be an estimate of the patient's bicarbonate level?

$$HCO_3^- = 24 \times 78 = 28.8$$

29mEq/L

ABG INTERPRETATION

- Degree of compensation
- Acid-base balance
- Cause: respiratory, metabolic, mixed
- Oxygenation degree of hypoxemia
- Must interpret in the context of the clinical picture!!
 - Requires ventilation status
 - History, signs, symptoms
- Acute changes versus chronic