OXYGENATION AND ACIDBASE EVALUATION

Chapter 1

MECHANICAL VENTILATION

- Used when patients are unable to sustain the level of ventilation necessary to maintain the gas exchange functions
- Artificial support of lung function
- The Roman physician Galen may
 have been the first to describe mechanical ventilation: "If you take a dead animal and blow air through its larynx [through a reed], you will fill its bronchi and watch its lungs attain the greatest distention."
- Andreas Vesalius (founder of modern human anatomy) also describes ventilation by inserting a reed or cane into the trachea of animals..

INDICATIONS

- Ventilatory Failure
- Oxygenation Failure
- Failure of both oxygenation and ventilation
- Pathophysiological Factors
- Increased airway resistance
- Changes in lung compliance
- Hypoventilation
- V/Q mismatch
- Intrapulmonary shunting
- Diffusion defect

VENTILATION DELIVERY

- Performed by:
- Hand

- Machine

- Interface
- ETT
- Tracheostomy
- Mask
- LMA

GAS EXCHANGE

ARTERIAL BLOOD GAS REVIEW

- Provides valuable information about a patient's oxygenation, ventilation, and acid-base status
- Vital part of the assessment and management of a mechanically ventilated patient
- Should be used with caution - represents one point in time
- A series of ABG results should be compared to see if "trends" are present
- Avoid excessive or curiosity sampling
- Interpretation in the context of the clinical setting/ patient status

OXYGENATION

$-\mathrm{PaO}_{2}$

- SaO_{2}
$-\mathrm{CaO}_{2}$
$-\mathrm{P}_{(\mathrm{A}-2)} \mathrm{O}_{2}$
- $\mathrm{Pv}_{\mathrm{v}} \mathrm{O}_{2}$
- $\mathrm{C}(\mathrm{a}-\mathrm{v}) \mathrm{O}_{2}$
- $\mathrm{V}_{\mathrm{V}}^{2}$
- DO_{2}
- ஷ̀s/Qंt

CLinical Rounds 1-1

A 40 year old patient has a $\mathrm{P}(\mathrm{A}-\mathrm{a}) \mathrm{O} 2$ of 15 mmHg . Is this in the normal range for this patient?

At age 20 the normal $\mathrm{P}(\mathrm{A}-\mathrm{a}) \mathrm{O} 2$ is about 5 mmHg ; it increases 4 mmHg per decade. At age 40 this would represent an increase of 8 mmHg or a value of 13 mmHg . The value of 15 is reasonably close to normal.

LOW OXYGEN LEVELS:

- Hypoxia
- Lower than normal oxygen pressure in the tissues or alveoli
- Types/Causes
- Hypoxemic
- Anemic
- Circulatory/stagnant
- Histotoxic
- Affinity
- Hypoxemia
- Low arterial blood oxygen pressure
- Causes
- Hypoventilation
- Decreased PiO_{2}
- Shunt
- Diffusion defects
- Poor distribution of ventilation

TRANSFER AND UPTAKE OF O_{2} FROM THE ALVEOLI

$\mathrm{P}_{(\mathrm{A}-\mathrm{a})} \mathrm{O}_{2}$:

- ability of lungs to bring in and transfer oxygen
- Increased gradient demonstrates a decreased transfer, due to:
- Age
- Lung disease
- V/Q mismatch
- Shunt
- Diffusion defects

TRANSFER AND UPTAKE OF O_{2} FROM THE ALVEOLI

$\mathrm{PaO}_{2} / \mathrm{P}_{\mathrm{A}} \mathrm{O}_{2}$:

- fraction of oxygen that is transferred to the artery
- Stable with changes in FiO_{2}
- Normal 0.9 (90\%)
- Less than 75\% indicates a problem

TRANSFER AND UPTAKE OF O_{2} FROM THE ALVEOLI

$\mathrm{PaO}_{2} / \mathrm{FiO}_{2}$:

-P to F ratio

- Amount of oxygen moving into the blood in relation to the inspired oxygen
- Used to describe the degree of lung injury
- Normal 380-476mmHg
- Lower values indicate disorders
- <200 ARDS
- 200-300 ALI

OXYHEMOGLOBIN DISSOCIATION CURVE

- S-shaped curve, relationship of plasma PO_{2} and O_{2} bound to $\mathrm{Hb}\left(\mathrm{SO}_{2}\right)$
- Flat portion: minor changes in PO_{2} have little effect on SO_{2} Strong Affinity!
- Steep portion: small drop in PO_{2} causes a large drop in SO_{2} Weak Affinity!

OXYGEN CONTENT AND OXYGEN DELIVERY

- Together these determine the amount of oxygen available for utilization at the tissues
- Considers oxygen, hemoglobin and cardiac output
$-\mathrm{CaO} 2=(1.34 \mathrm{xHbxSaO} 2)+(\mathrm{PaO} 2 x 0.003)$
- DO2= $\mathrm{CaO} 2 \times \mathrm{CO}$

CLINICAL ROUNDS 1-2

A patient has a measured PaO_{2} of 80 mmHg and an SaO_{2} of 97%. The Hb is $10 \mathrm{gm} \%$. Does this patient have a normal oxygenation status?

Although the PaO_{2} and SaO_{2} are normal the low hemoglobin will cause a reduction in this patient's CaO_{2}. Therefore this patient does not have a normal oxygenation status.

ALVEOLAR VENTILATION

- Normal: 4-5L/min
- $\mathrm{V}_{\mathrm{A}}=\mathrm{Vt}-\mathrm{V}_{\mathrm{D}}$
- $\dot{\mathrm{V}}_{\mathrm{A}}=\left(\mathrm{Vt}-\mathrm{V}_{\mathrm{D}}\right) \mathrm{xf}$
- $\uparrow \dot{\mathrm{V}}_{\mathrm{A}}=\downarrow \mathrm{PaCO}_{2}$,
$\uparrow \mathrm{PaO}_{2}$
- Hyperventilation
- $\downarrow \mathrm{V}_{\mathrm{A}}=$
$\uparrow \mathrm{PaCO}_{2}, \downarrow \mathrm{PaO}_{2}$
- Hypoventilation
- Alveolar air equation

- As $\mathrm{PaCO}_{2} \uparrow$ by $1 \mathrm{mmHg}, \mathrm{PaO}_{2} \downarrow$ by 1.25 mmHg

CLINICAL ROUNDS 1-3

A patient has a PaO_{2} of 50 mmHg and a PaCO_{2} of 80 mmHg . If the PaCO_{2} were to decrease to a normal of 40 mmHg , what would you expect the PaO_{2} to be after the change (assuming the PaO_{2} changes were due to the PaCO_{2} changes alone and not to lung pathology

A change in PaCO_{2} from 80 to 40 mmHg is a 40 mmHg difference; 40 X $1.25=50 \mathrm{mmHg}$. The PaO_{2} would be expected to increase by about 50 mmHg to approximately
100 mmHg .

$\mathrm{PaCO}_{2}=\underline{\mathrm{VCO}}_{\underline{2}} \underline{\mathrm{~V}_{\mathrm{A}}} \frac{0.863}{\mathrm{~V}_{\mathrm{A}}}$

Relationship between the amount of CO_{2} produced from cellular metabolism and how well the CO_{2} is removed from the lungs

HENDERSON-HASSELBALCH EQUATION

- Simplified to : $\mathrm{H}^{+}=\underline{24 \times \mathrm{PaCO}_{2}}$ $\mathrm{HCO}_{3}{ }^{-}$
- Requires knowing the hydrogen ion concentration for a given pH
- Verification of $\mathrm{pH} / \mathrm{PaCO}_{2}$ relationship
- Buffers make it more difficult for the blood to become acidotic, CO_{2} must increase more to change the pH than compared to how much it decreases to raise the pH

CLINICAL ROUNDS 1-4

A patient has a PaCO_{2} of 78 mmHg and a pH $\mathrm{HCO}_{3}{ }^{-}=\underline{24 \times 78}=28.8$ 65 of 7.20 . What would be an estimate of the patient's bicarbonate level?
$29 \mathrm{mEq} / \mathrm{L}$

ABG INTERPRETATION

- Degree of compensation
- Acid-base balance
- Cause: respiratory, metabolic, mixed
- Oxygenation - degree of hypoxemia
- Must interpret in the context of the clinical picture!!
- Requires ventilation status
- History, signs, symptoms
- Acute changes versus chronic

