Basic Terms \& Concepts of Mechanical Ventilation

Chapter 2

Spontaneous Ventilation

- Movement of air in and out of the lungs
- Muscles of inspiration contract - expand the thorax
- Passive exhalation
- Air flow due to pressure gradients - high to low pressure
- No gas flow present when pressures across the gradient are equal

Respiration

- Movement of gas molecules across a membrane
- Internal - cellular level
- External - a-c membrane

Pressure Equivalents

- Ventilating pressures use cmH 2 O
- $1 \mathrm{mmHg}=1.36 \mathrm{cmH} 2 \mathrm{O}$
- Pressures are referenced from atmospheric pressure baseline value of zero
- May also see kilopascals used $1 \mathrm{kPa}=7.5 \mathrm{mmHg}$ (SI units)

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{awo}}-\begin{array}{c}
\text { Mouth or airway } \\
\text { opening pressure }
\end{array} & \mathrm{P}_{\mathrm{L}} \text { or } \mathrm{P}_{\mathrm{tp}}=\text { Transpulmonary pressure } \\
\left(\mathrm{P}_{\mathrm{L}}=\text { Palv }-\mathrm{P}_{\mathrm{pl}}\right)
\end{array}
$$

- $\mathrm{P}_{\mathrm{awo}}$: zero*
- P_{bs} : zero*
- $\mathrm{P}_{\mathrm{pl}}:-5 \mathrm{cmH} 2 \mathrm{O}-10 \mathrm{cmH} 2 \mathrm{O}$
- $\mathrm{P}_{\mathrm{A}}:+1 \mathrm{cmH} 2 \mathrm{O}-1 \mathrm{cmH} 2 \mathrm{O}$

Mosby items and derived items © 2009 by Mosby, Inc., an affiliate of Elsevier Inc.

Pressure Gradients Matching

- Transairway Pressure
- Transthoracic Pressure
- Transpulmonary Pressure
- Transrespiratory Pressure

1. $\mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{bs}}$
2. $\mathrm{P}_{\mathrm{aw}}-\mathrm{P}_{\mathrm{A}}$
3. $\mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{pl}}$
4. $\mathrm{P}_{\mathrm{awo}}-\mathrm{P}_{\mathrm{bs}}$

Mechanics of Spontaneous Ventilation

Copyright © 2006, Mosby Inc.

Lung Characteristics: Compliance

- Relative ease with which a structure distends
- opposite of elastance
- Used to describe the elastic forces that oppose lung inflation
- $\triangle \mathrm{V} / \triangle \mathrm{P}=\mathrm{L} / \mathrm{cmH} 2 \mathrm{O}$
- $50-170 \mathrm{ml} / \mathrm{cmH} 2 \mathrm{O}$ normal
- 35/40-100ml/cmH2O intubated patient
- Static Compliance
- Dynamic Compliance

Clinical Rounds 2-1

If compliance is normal at $0.1 \mathrm{~L} / \mathrm{cmH} 2 \mathrm{O}$, calculate the amount of pressure needed to attain a tidal volume of $0.5 \mathrm{~L}(500 \mathrm{ml})$.
$\triangle P=\triangle V / C$
$0.5 / 0.1=5 \mathrm{cmH} 2 \mathrm{O}$

A Palv change of 5 cmH 2 O would be needed to achieve a 0.5 L tidal volume in a person with normal lung compliance.

Lung Characteristics: Resistance

- Frictional forces associated with ventilation
- Anatomic structures
- Tissue viscous resistance
- Ability of air to flow depends on
- Gas viscosity
- Gas density
- Length and diameter of the tube
- Flow rate of the gas through the tube
- Raw $=\mathrm{P}_{\text {TA }}$ /flow $\quad \mathrm{cmH} 2 \mathrm{O} / \mathrm{L} / \mathrm{sec}$
- $\mathrm{P}_{\mathrm{TA}} \approx$ PIP - Pplat
- Assumes constant flow
- Normal 0.6-2.4 cmH2O/L/sec
- Intubated patients $5-7 \mathrm{cmH} 2 \mathrm{O} / \mathrm{L} / \mathrm{sec}$ (and higher!)

Clinical Rounds 2-2

An intubated 36y.o. woman is being ventilated with a volume of $0.5 \mathrm{~L}(500 \mathrm{ml})$. The PIP is 24 cmH 2 O , Pplat is 19 cmH 2 O and the baseline pressure is zero. The inspiratory gas flow is constant at $60 \mathrm{~L} / \mathrm{min}(1 \mathrm{~L} /$ sec). What are the static compliance and airway resistance? Are these normal values?

Compliance : 500/19 = $26.3 \mathrm{ml} / \mathrm{cmH} 2 \mathrm{O}$

Raw: 24-19/1 = $5 \mathrm{cmH} 2 \mathrm{O} / \mathrm{L} / \mathrm{s}$

The patient's compliance is very low, suggests that some condition is making the lungs stiffer
Raw is low considering the presence of an artificial airway

Time Constants

- Heterogeneous not homogeneous lungs
- Representation of passive filling and passive emptying
- Differences in compliance and resistance affect how rapidly the lung units fill and empty
- Normal lung units fill within a normal length of time
- Decreased compliance - stiff lung units fill rapidly
- Increased airway resistance - narrow airways cause slow filling
- Time constant $=$ compliance x resistance
- Important for setting inspiratory time and expiratory time

Types of Ventilators

- Negative Pressure
- Positive Pressure
- High Frequency

Negative Pressure Ventilators

- Attempts to mimic normal physiology
- Types:
- Iron lung - tank ventilator
- Chest cuirass
- Maintained without the need for ETT, tracheostomy, able to talk and eat
- Cardiovascular concerns, access to patient

High Frequency Ventilation

- Above normal ventilating rates with below normal ventilating volumes
- HFPPV
- HFJV
- HFOV

Positive Pressure Ventilators

- Requires airway interface
- Applies pressure to create gradient between mouth and lung

Inspiration
Pressure above atmospheric at mouth or upper airway

Pressure Measurement

- Manometer - pressure gauge
- Pressure points graphed over time during the breath cycle
- Used to:
- Monitor patients
- Describe modes of ventilation
- Calculate a variety of parameters
- Baseline/End expiratory pressure
- Peak
- Plateau

