Chapter 6

Adrenergic (Sympathomimetic) Bronchodilators
Clinical Indications for Adrenergic Bronchodilators

- Relaxation of smooth airway muscle in the presence of reversible obstruction
 - Asthma
 - Bronchitis
 - Emphysema
 - Bronchiectasis
Indication for Short-acting Agents

- *Acute* reversible airflow obstruction
- Short-acting agents:
 - a.k.a. “rescue” agents
 - Albuterol
 - Levalbuterol
 - Pirbuterol
Indication for Long-acting Agents

- Maintenance bronchodilation, control of bronchospasm, and control of nocturnal symptoms
 - Salmeterol
 - Formoterol
Indications for Racemic Epinephrine

- To control airway bleeding during endoscopy
- To reduce airway swelling
 - Postextubation
 - Epiglottitis
 - Croup
 - Bronchiolitis
Specific Adrenergic Agents and Formulations

● Ultrashort acting
 ➢ Duration < 3 hours
 ➢ Epinephrine, racemic epinephrine, isoetharine

● Short acting
 ➢ Duration of 4 to 6 hours
 ➢ Albuterol, levalbuterol, metaproterenol, pirbuterol

● Long acting
 ➢ Duration of 12 hours
 ➢ Salmeterol, formoterol, arformoterol
Catecholamines

- Sympathomimetic bronchodilators are either catecholamines or derivatives of catecholamines
- Catecholamines mimic epinephrine
 - Tachycardia
 - Elevated BP
 - Smooth muscle relaxation (bronchioles and skeletal muscle blood vessels)
 - Glycogenolysis
 - Skeletal muscle tremor
 - CNS stimulation
Adrenergic Bronchodilators as Stereoisomers

- Nonsuperimposable molecular mirror images
 - (R)-Isomer (right isomer)
 - (S)-Isomer (left isomer)
- Similar physical and chemical properties
- Different physiological effects
- Example: levalbuterol
Epinephrine

- Potent catecholamine bronchodilator
- Stimulates both α and β receptors
- High prevalence of side effects
 - Tachycardia
 - Increased BP
 - Tremor
 - Headache
 - Insomnia
- Available as a synthetic racemic mixture
Isoproterenol

- Potent catecholamine bronchodilator
 - Stimulates both β_1 and β_2 receptors
- No longer manufactured as a nebulizer solution
- Available parenterally
Isoetharine

- One of first β_2-specific adrenergic bronchodilators
- Short duration, rapid onset
- Minimal β_1 stimulation
Keyhole Theory of β_2 Specificity

- The larger the catecholamine side chain, the more β_2 specific
 - Epinephrine
 - Equal α and β
 - Isoproterenol
 - Strong β, little α
 - Isoetharine
 - β_2 preferential
Metabolism of Catecholamines

- Rapidly inactivated by COMT
 - Duration of action is limited
 - 1.5 to 3 hours
- Unsuitable for oral administration
 - Inactivated in gut and liver
- Also inactivated by:
 - Heat
 - Light
 - Air
Resorcinol Agents

- Better for maintenance therapy
- Significantly longer duration of action
 - 4 to 6 hours
- Slower peak effect
 - 30 to 60 minutes
- Examples:
 - Terbutaline
 - Metaproterenol
Saligenin Agents

- Example:
 - Albuterol

- Available as:
 - MDI
 - Syrup
 - Nebulizer
 - Extended-release tablets
Saligenin Agents

Benefits:
- β_2 Preference
- Effective by mouth
- Peak effect in 30 to 60 minutes
- Duration of up to 6 hours
Pirbuterol

- Noncatecholamine adrenergic agent
- Available as breath-actuated MDI
- Onset: 5 to 8 minutes
- Peak effect: At 30 minutes
- Duration of action: 5 hours
Levalbuterol: The (R)-Isomer of Albuterol

- Pure (R)-isomer of racemic albuterol
- Available as HFA MDI and nebulizer solution
- Available in four doses:
 - 0.31 mg/3 mL
 - 0.63 mg/3 mL
 - 1.25 mg/3 mL
 - 1.25 mg/0.5 mL concentrate
Long-acting β-Adrenergic Agents

- Offer less frequent dosing and nocturnal protection
 - Extended-release albuterol
 - Salmeterol
 - Formoterol
 - Arformoterol
Extended-release Albuterol

- Available as Vospire ER
- 4-mg or 8-mg oral tablet
- Activity time, 8 to 12 hours
Salmeterol

- Available as DPI (Diskus inhaler)
- Bronchodilator effect
 - Slower onset than albuterol
 - Time to peak bronchodilating effect, 3 to 5 hours
 - Duration, 12 hours
Formoterol

- β_2-Selective agonist
- Short time to bronchodilatory effect (3 minutes)
- Duration of up to 12 hours
- Available as DPI
- Used for:
 - Asthma (5 yrs +)
 - Exercise-induced bronchospasm (5 yrs +)
 - COPD
Antiinflammatory Effects

- Salmeterol and formoterol inhibit mast cell activation
- *In vitro* results only; not clinically proven
Clinical Use

- Maintenance therapy of asthma not controlled by inhaled corticosteroids
- COPD needing daily bronchodilator
- *Not* recommended for rescue therapy
- *Not* recommended for treatment of breakthrough symptoms
Arformoterol

- β_2-Selective agonist
- Single isomer of formoterol
- Duration of up to 12 hours
- Available as nebulizer solution
- Approved for:
 - COPD
Mode of Action

- α-Receptor stimulation
 - Vasoconstriction/vasopressor effect
- β_1-Receptor stimulation
 - Increased HR and contractile force
- β_2-Receptor stimulation
 - Relaxation of bronchial smooth muscle
β- and α-Receptor Activation

- β Receptor
 - Binds to β receptor, ultimately causing increased synthesis of cAMP

- α Receptor
 - Inhibits release of neurotransmitter from presynaptic neuron
 - *But*…may also lower synthesis of intracellular cAMP
α₁-Receptor Activation

- Agonists such as:
 - Phenylephrine
 - Epinephrine
- Results in vasoconstriction of peripheral blood vessels
Salmeterol, Formoterol, and Arformoterol: Mechanism of Action

Salmeterol
- Lipophilic
- Approaches β receptor *laterally*

Formoterol
- Also lipophilic
- Can also approach receptor from aqueous phase
Routes of Administration

- Inhalation
 - MDI
 - DPI
 - Nebulized
- Orally
 - Tablets
 - Syrup
- Parenterally
Inhalation Route

- Catecholamines are ineffective orally
 - Benefits of inhalation:
 - Rapid onset
 - Smaller doses
 - Reduced side effects
 - Drug delivered directly to target organ
 - Relatively safe and painless
Inhalation Route

- Limitations:
 - Time
 - Public embarrassment
 - Difficult to use correctly
Continuous Nebulization

- Used for management of asthma
- Reduces need for frequent therapist attendance
- Generally 10 to 15 mg/hour for adult
Continuous Nebulization

- Delivery methods
 - Refilling SVN
 - Volumetric infusion pump
 - Large-volume nebulizer

- Toxicity and monitoring
 - Potential complications
 - Cardiac arrhythmias, hypokalemia, hyperglycemia, tremor
Oral Route

- **Advantages**
 - Easy to use
 - Short administration time
 - Reproducibility and controlled dosage

- **Disadvantages**
 - Longer onset of action
 - More systemic side effects
 - Loss due to first pass through liver
Parenteral Route

- Used in the emergency management of acute asthma
- Thought to be useful when obstruction prevents penetration of aerosol to lung periphery
- Should be used as a last resort and requires:
 - Infusion pump
 - Cardiac monitor
 - Close attention for systemic side effects
Adverse Side Effects

- Side effect: Any effect other than intended therapeutic effect
 - Tremor
 - Cardiac effects
 - Tolerance to bronchodilator effect
 - Loss of bronchoprotection
 - CNS effects
 - Fall in PaO$_2$
 - Metabolic disturbances
 - Propellant toxicity and paradoxical bronchospasm
 - Sensitivity to additives
The β-Agonist Controversy

- The asthma paradox: Increasing evidence of asthma mortality and morbidity despite advances in treatment
 - Lack of steroid use?
 - Loss of bronchodilator effect?
 - Increase in bronchial hyperreactivity?
 - Exposure to triggers with no immediate symptoms?
The β-Agonist Controversy

● Increasing evidence of asthma mortality and morbidity despite advances in treatment (continued)
 ➢ Temporary relief leads to delay in seeking medical help?
 ➢ Poor patient compliance/education?
 ➢ Accumulation of (S)-isomer?
 ➢ Environmental pollution and lifestyle changes?
Respiratory Care Assessment of \(\beta \)-Agonist Therapy

- Assess effectiveness of drug based on indications for use
- Monitor peak flow rates
- Perform physical assessment before/after treatment
- Monitor HR for 20% increase
- Subjective reactions
Respiratory Care Assessment of β-Agonist Therapy

- ABGs
- Monitor glucose/K⁺
- PFTs
- Provide patient education
- Instruct/verify correct use of devices
Respiratory Care Assessment of β-Agonist Therapy

- For long-acting β agonists
 - Assess ongoing lung function
 - Assess use of rescue drug and nocturnal symptoms
 - Assess number of exacerbations
 - Assess days absent from work/school
 - Assess ability to reduce dose of inhaled corticosteroids