Chapter 18

Skeletal Muscle Relaxants
(Neuromuscular Blocking Agents)
Uses of Neuromuscular Blocking Agents

- Facilitate intubation
- Surgery
- Enhance ventilator synchrony
- Reduce intracranial pressure (ICP)
- Reduce O_2 consumption
- Terminate *status epilepticus* and *tetanus*
- Facilitate procedures and studies
- Keep patients immobile
Physiology of the Neuromuscular Junction

- **CNS**
 - Brain
 - Spinal cord

- **PNS**
 - Somatic motor nervous system (skeletal)
 - Voluntary control
 - Autonomic nervous system
 - Involuntary control
Physiology of the Neuromuscular Junction (cont’d)

- **Neuron**
 - Cell body
 - Axons
 - Dendrites

- **Neurotransmitter**
 - Acetylcholine
 - Acetylcholinesterase (AChE)
Physiology of the Neuromuscular Junction (cont’d)

- **Depolarization**
 - Action potential occurs

- **Repolarization**
 - Membrane potential returns to baseline
Physiology of the Neuromuscular Junction (cont’d)

- Two ways to block muscle contraction
 - Competitive inhibition
 - Nondepolarizing agents
 - Prolonged occupation and persistent binding
 - Depolarizing agents
Nondepolarizing Agents

- Block acetylcholine receptors without activating them
- Mode of action
 - Affect postsynaptic cholinergic receptors
 - Compete against endogenous acetylcholine
 - Effect is dose related
 - Acetylcholinesterase inhibitors (neostigmine) can reverse blockade
Nondepolarizing Agents (cont’d)

- Pharmacokinetics of nondepolarizing agents
 - Chemically resemble acetylcholine
 - Onset of paralysis and duration of action vary widely and are dose dependent
 - Duration can be increased by
 - Advanced age
 - Hepatic or renal failure
Nondepolarizing Agents (cont’d)

- **Metabolism**
 - When normal conduction returns, 75% of receptors may still be occupied by blocker
 - Additional boluses may appear more potent
 - *d*-Tubocurarine and doxacurium
 - Minimally metabolized
 - Pancuronium
 - Hepatic metabolism
Nondepolarizing Agents (cont’d)

- Metabolism (cont’d)
 - Atracurium and cisatracurium
 - Spontaneous degradation by pH and temperature
 - Vecuronium
 - Hepatic metabolism
 - Mivacurium
 - Shortest acting (10 to 20 minutes)
 - Eliminated by plasma cholinesterase
Nondepolarizing Agents (cont’d)

- Adverse effects and hazards
 - Cardiovascular effects
 - Vagolytic effect
 - Histamine release
 - Cause histamine release from mast cells
 - Inadequate ventilation
 - Paralysis of diaphragm and intercostals
Nondepolarizing Agents (cont’d)

- Reversal of nondepolarizing blockade
 - Produced by cholinesterase inhibitors
 - Inhibits cholinesterase that breaks down acetylcholine
 - Allows more acetylcholine at junction to displace blocker
- Agents
 - Neostigmine
 - Edrophonium
 - Pyridostigmine
Depolarizing Agents

.mode of action
- Depolarizes muscle membrane like acetylcholine
 - Resistant to AchE for longer period
 - Causes fasciculations
- Phase I block
 - Prolonged depolarization/flaccid paralysis
- Phase II block
 - Resembles nondepolarizing block
 - Limits use in repeat doses
Depolarizing Agents (cont’d)

- **Metabolism**
 - Rapid hydrolysis by plasma cholinesterase

- **Reversal**
 - No agents available for reversal of succinylcholine
Depolarizing Agents (cont’d)

- Adverse effects and hazards
 - Sympathomimetic response
 - Vagal response with repeat boluses
 - Muscle pain/soreness
 - Hyperkalemia
 - Increased intracranial, intraoptic, and intragastric pressure
 - Malignant hyperthermia
Neuromuscular Blocking Agents and Mechanical Ventilation

- Used to improve ventilation and oxygenation and to reduce pressure
- Beneficial in:
 - Status asthmaticus
 - Inverse ratio ventilation and high-frequency oscillatory ventilation (HFOV)
 - Status epilepticus
 - Neuromuscular toxins
 - Tetanus
 - Acute respiratory distress syndrome (ARDS)
Neuromuscular Blocking Agents and Mechanical Ventilation (cont’d)

- Precautions and risks
 - Proper eye care
 - Suctioning
 - Proper sedation and analgesia
 - Aspiration/nosocomial pneumonia
 - Risk of prolonged skeletal muscle weakness
 - Decubitus ulcers
 - Deep venous thrombosis (DVT)
Neuromuscular Blocking Agents and Mechanical Ventilation (cont’d)

- Use of sedation and analgesia
 - Absolutely essential!
 - Monitor for tachycardia, hypertension, diaphoresis, and lacrimation
 - Analgesics
 - Fentanyl
 - Morphine
 - Amnestic sedatives
 - Propofol
 - Lorazepam
 - Midazolam
Neuromuscular Blocking Agents and Mechanical Ventilation (cont’d)

- Interactions with neuromuscular blocking agents
 - Inhaled anesthetics potentiate blockade
 - Aminoglycosides also produce NMB
 - Agents antagonizing NMB
 - Phenytoin
 - Azathioprine
 - Theophylline
 - Potentiate blockade
 - Acidosis
 - Hypokalemia
 - Hyponatremia
 - Hypocalcemia
 - Hypomagnesemia
Neuromuscular Blocking Agents and Mechanical Ventilation (cont’d)

- **Choice of agents**
 - Situation dependent
 - **Factors**
 - Duration of procedure
 - Need for quick intubation
 - Adverse effects
 - Route of elimination
 - Drug interactions
 - Cost
Monitoring of Neuromuscular Blockade

- Paralysis may mask clinical signs/symptoms

- Methods
 - Visual
 - Tactile
 - Electronic
Monitoring of Neuromuscular Blockade (cont’d)

- Loss of muscle activity
 - Eyelids
 - Face
 - Neck
 - Extremities
 - Abdomen
 - Intercostals
 - Diaphragm

- Return of muscle activity
 - Occurs in reverse order
Monitoring of Neuromuscular Blockade (cont’d)

- Twitch monitoring
- Train-of-four evaluation
 - 2 Hz over 2 seconds
 - 0 twitches = 100% blockade
 - 1 twitch = 95% blockade
 - 2 twitches = 90% blockade
 - 3 twitches = 80% blockade
 - 4 twitches = <75% blockade
The Future of Neuromuscular Blocking Agents and Reversal

- **Gantacurium**
 - Nondepolarizing
 - Rapid onset
 - Short-acting
 - Organ-independent inactivation
 - Less histamine release

- **Sugammadex**
 - Inactivates and removes NMBA
 - Reverses rocuronium and vecuronium
 - Less effective on pancuronium, succinylcholine, and benzylisoquinoliniums