Pneumothorax

• Defined as air in the pleural space which can occur through a number of mechanisms

Traumatic pneumothorax
• Penetrating chest trauma
 – Common secondary to bullet or knife penetration
 – Chest tube is usually adequate to treat.
 – May require surgery if bleeding is severe

• Blunt trauma
 – Broken ribs puncture lung with air escape into pleura.
 – Chest tube is all that is generally required.
Pneumothorax (cont.)

• Blunt trauma (cont.)
 – Tracheal fracture and esophageal rupture
 • These are two special causes of pneumothorax that require surgical repair.

• Iatrogenic
 – Most common cause of traumatic pneumothorax
 – Common iatrogenic causes are
 • Needle aspiration lung biopsy
 • Thoracentesis
 • Central venous catheter placement
Pneumothorax (cont.)

Neonatal

• Spontaneous pneumothorax occurs in 1–2% of infants

• Likely caused by high transpulmonary pressures and transient bronchial blockage (i.e. meconium)

• Recognition is difficult
 – Contralateral heart sounds may be a clue.
 – Transillumination of thorax may be useful.

• Most neonates with this condition require chest tubes.
Pneumothorax (cont.)

Spontaneous

• Pneumothorax with no obvious cause

• Primary spontaneous pneumothorax
 – Occurs with no underlying lung disease
 – Most (80%) have small subpleural blebs
 – Typically happens in tall, thin, young adults
 – >90% have had short-term smoking history
 • Smoking cessation recommended
Pneumothorax (cont.)

- Secondary spontaneous pneumothorax
 - Occurs with underlying lung disease
 - Most common associated disease is COPD
 - Also seen during exacerbations of asthma and CF
 - Interstitial lung diseases with normal lung volumes
 - Sarcoidosis, BOOP
 - Depending on extent of disease, pneumothorax can be devastating
 - 43% 5-year mortality
 - Evacuation, not observation, should be the standard of care with these patients.
Pneumothorax (cont.)

Complications

• Tension pneumothorax
 – Pleural air pressure exceeds atmospheric pressure
 – Radiographic appearance
 • Mediastinal shift, diaphragmatic depression, flattened ribs
 – Clinical presentation
 • Venous return and cardiac output decrease with hypotension and tachycardia
 • Hypoxemia due to alveolar collapse
 – Treatment: emergency needle decompression
Pneumothorax (cont.)

Complications

• Reexpansion pulmonary edema
 – Occurs following rapid lung reexpansion particularly:
 • From low lung volumes
 • Long duration pneumothorax
 • High pressure gradient across lung
 – May be related to reperfusion injury
 – Lung reexpansion should be slow
 • First, just waterseal, no suction
 • If lung fails to reexpand, then apply suction
Pneumothorax (cont.)

Diagnosis

• Chest radiography
 – Requires good quality film
 – In ICU, 30% of pneumothoraces are missed due to:
 • Low-quality film
 • Supine position of patient on AP film
 • Air hidden behind thoracic or mediastinal structures

• CT may be used to confirm size and presence of pneumothorax.
Pneumothorax (cont.)

Therapy

• Oxygen
 – Should be administered to all patients
 – Supplemental O₂ speeds absorption of air from pleural space

• Observation of stable patients
 – Primary: observe 4 hours, if no enlargement: home
 – Secondary and iatrogenic: hospitalize and observe carefully,
 • If there is any deterioration (SpO₂, RR, etc) - drain
Pneumothorax (cont.)

Therapy

• Simple aspiration
 – Small catheter placed in pleural space
 – Connect to three-way stopcock
 – Slowly evacuate until no more air can be removed
 – This works as many leaks heal between time of leak and its drainage.

 – If 4 L air is removed without resistance, chest tube placement is required
Pneumothorax (cont.)

Therapy

• Chest tubes buy time
 – Resolution is mostly determined by lung healing
 – Small bore: placed via small incision in second intercostal space (ICS), midclavicular line or laterally, fifth–seventh ICS
 • Connected to underwater seal or Heimlich valve
 – Large bore: placed via blunt dissection, usually connected to “three-bottle” chest drainage system
 – Chest tubes are sutured in place

• Pleurodesis: consider with recurrent pneumothoraces
Bronchopleural fistula
• Usually used to refer to large, persistent air leaks

• Most are on MV
 – PPV perpetuates the leak

• May require more than one chest tube
 – Aids restoring lung proximity to chest wall and promotes healing

• Avoid auto-PEEP, consider bronchoscopic closure or thoracoscopic surgery