How we see

FIGURE 5.5

Rods and Cones

To help you remember information, you should organize the information, relate the information to images, your experiences and connect the information in a story (see homework assignment).

Rods

- Long and thin with blunt ends
- estimated at 120 million
- primarily for night vision / seeing in dim light conditions.
- there are no rods in fovea, but more prevalent in the peripheral areas of the retina

Cones

- short and fatter with ends that taper to a point
- estimated at 6 million
- primarily for color vision
- perceiving fine details
- cones are concentrated in the fovea, and less common in the periphery

Rods and Cones

To help you remember information, you should organize the information, relate the information to images, your experiences and connect the information in a story (see homework assignment).

Rods and Cones

To help you remember information, you should organize the information, relate the information to images, your experiences and connect the information in a story (see homework assignment).

Rods
- Long and thin with

- estimated at 120 million
- primarily for night vision / seeing in dim light conditions.
- there are no rods in fovea, but more prevalent in the peripheral areas of the retina

Cones

- short and fatter with ends that taper to a point
- estimated at 6 million
- primarily for color perception
- perceiving fine details
- cones are concentrated in the fovea, and less common in the periphery

The blind spot

- Why is there a blind spot?
- Why don't we perceive a blind spot?
- What does the blind spot tell us about perception?
- What does this suggest to a driver about seeing pedestrians, people riding bicycles, motorcycles?

How many of you read this wrong?
Our brains fill in missing information or correct information unconsciously and automatically to conform with what we expect to perceive.

The Trichromatic Theory

Cones are responsible for color perception. According to the theory, there are three types of cones in the fovea that are very sensitive to certain wavelengths of light and not very sensitive to the other wavelengths of light.

- Blue light (short wavelength), S cones
- Green light (medium wavelength), M cones
- Red light (long wavelength,), L cones

The perception of other colors (such as yellow) is the stimulation of a combination of cones (green and red).

The Trichromatic Theory

What does the trichromatic theory of color perception explain?
People with red/green color blindness cannot distinguish between the two colors because their red and green cones are sensitive to the same color. Technically, this should be called color deficiency, but is commonly called being color blind (about 8% for men, and $1 / 2 \%$ for women).

[^0]
The Trichromatic Theory

Rod Stewart Cone Stewart

- Blue sensitive cones
- Green or Red sensitive cones
- Green or Red sensitive cones
- Blue sensitive cones
- Green sensitive cones
- Red sensitive cones

Color Perception

Color Perception

The Opponent-Process Theory

The trichromatic theory cannot explain an afterimage such as seeing a faint red, white and blue flag after staring at a yellow/green flag.

Figure 3.6
Hockenbury/Nolan, Psychology, 8e, 62018 Worth Publishers
According to the opponent process theory, there are three types of color sensitive neurons that are sensitive to a certain pair of colors:

1. red / green	red / green	red / green	red / green
2. blue / yellow	blue / yellow	blue / yellow	blue / yellow
3. white / black	white / black	white / black	white / black

One single receptor can only be activated to a single color, while the other color is inhibited (blue can be activated, while the yellow is inhibited). With multiple receptors, some receptors can be sensitive to blue, while others can be sensitive to yellow.

All color perceptions are a combination of these receptors. For example,

- orange $=$ red/green + bue/yellow
- purple $=$ red/green + blue/yellow

How does the opponent-process explain an afterimage?

Afterimages are explained when it is combined with the general principle of sensory adaptation-the weakening of the sensitivity of your senses when they become adapted to a stimulus.

Before staring at the "green / yellow" flag	Normal Sensitivity red / green blue / yellow / black
Staring at the	Normal sensitivity Reduced sensitivity
"green / yellow" flag	red / green
	blue / yellow
	valhite / black
Looking at a white background that reflects all colors of light	RedOrange\YellowGreenBluelndigoViolet
	RedOrange VellowGreenBluelndigoViolet
Since the red and blue r accentuate those colors afterimage of a red, whit	s are more sensitive, they will activate and you look at a white background, producing a blue flag.

What theory of color vision is "right", they both can't be right?

What theory of color perception explains how we perceive color?
This is the wrong question to ask about color perception. Both theories explain color perception, but at a different level of color perception.

- The trichromatic theory primarily explains perception within the structure of the eye (the cones and retina) before being transmitted to the brain via the optic nerve.
- The opponent-process theory explains perception within the ganglion cells, thalamus and visual cortex.

FIGURE 5.5
Glowimages/Alamy Stock Photo
Copyright @ 2022 W. W Norton \& Co

[^0]: Image source: Psychology (2009), Hockenbury and Hockenbury

