Chapter 6 Proteins and Amino Acids

I Introduction

Wh	at is	an <u>element</u> ?
Wh	at el	ements do carbohydrate, fat & protein have in common?
The	ele	ment in protein NOT found in either carbohydrate or fat
		II The Structure of Amino Acids and of Protein
A.	Wl	nat is the structure of an amino acid?
	1.	central carbon and one hydrogen
	2.	an acid group (carbon, a oxygen and an OH) (COOH)
	3.	an amino group (NH2)
	4.	a side chain, which is different for each amino acid (make amino acids differ in
		size, shape, and electrical charge)
B.	Wl	nat are the building blocks of <i>protein</i> (different one
	the	body uses)
	1.	How does the body get these amino acids?
		1 protein
		2 old, worn out proteins in the body3 amino acids
	2.	What is the definition of "essential amino acids"?
	3.	What is the definition of "non-essential amino acids"?
		What does the <u>cell</u> use to make these non-essential amino acids?
	4.	How does the body know how to put these amino acids together to make a
		protein it needs, like hemoglobin or insulin or muscle tissue?
	5.	Name of bond joining one amino acid to another bond
	6.	The protein coils and folds based on how the amino acids in the strand attract
		and repel one another.
	7.	determines function.

C.		the slinky structure of <u>protein</u> What does the coiled & twisted slinky represent?
		What process in the body uncoils the proteins in the food you eat?
	2.	What did the cut up pieces of wire represent?
		What process in the body breaks up the uncoiled protein into amino acids?
		III FUNCTIONS in the Body of Proteins
Α.	ST	TRUCTURAL PROTEINS-
	3.	Collagen- skin, tendons, connective tissue, bones, scar tissue, hair, nails
	4.	Proteins making up muscles and organs
В.	W	ORKING PROTEINS (help the body FUNCTION)
	1.	Hormones, examples from chapter on carbohydrate a
		b
	2.	Enzymes, examples
		a.
		b.
		c. Where do our digestive enzymes come from?
	5.	Transport proteins
		a. lipoproteins. What do these proteins transport?
		b. Sodium/Potassium pump (an example of a cellular pump)
		c. hemoglobin. Transports what?
	6.	Plasma proteins. How do these help regulate fluid balance in the blood and help
		prevent edema (definition- accumulation of fluid in body's tissues)? <i>Large</i> ,
		negatively charged proteins in blood attract water back into the blood that has
		accumulated in tissues. Why has this water gone into the tissues?
	7.	Antibodies
	8.	Energy- usually use & before using protein
		What is the important way the muscles help provide energy for the brain?

IV Protein in the Diet- Quality

<u>Measures</u> of Protein <u>Quality</u> in a food: *digestibility* and how well the *amino acid pattern* of the protein supports growth.

- A. **Digestibility** Animal protein is more digestible than plant protein.
- B. Amino Acid Pattern
 - 1. Complete protein
 - a. Definition: a protein in food that has all the ESSENTIAL amino acids (in the needed proportions) for building protein in the **cells** of the body
 - b. Food sources- (See the document, "Food Sources and Health Benefits of the Macronutrients" posted in moodle).
 - c. Why does the chicken put protein in the egg? (There are equal amounts of protein in the yolk & white.)

2. Incomplete protein

- a. Definition- a protein in food that is missing enough of one or more of the essential amino acids needed for the building of protein in the body's **cells**
- b. Food sources- (See the document, "Food Sources and Health Benefits of the Macronutrients" posted in moodle).
- c. Why does the plant put protein in the seed?
- d. Why do kidney beans have more protein than green beans?
- Mutual Supplementation Proteins- 2 <u>in</u>complete proteins that when combined form complete protein (legume + grain)
 Example:

Which of the following are examples of **Mutual Supplementation**?

a. bean burrito b. oatmeal & milk c. split pea soup & cornbread d. green beans & dinner roll

V Problems with Protein Quantity

A.		oblems with high protein levels in your diet:
	1.	Amine group (the N part) of extra amino acids - pulled off by &
		excreted by
		This can be hard on and
	2.	Central C & H, acid groups (COOH) & side chains (mostly C, H, O)- used for
		if you need it OR if the calories are extra, it is changed into
	3.	may accelerate adult loss by causing loss
	4.	Harmful to because a high protein diet is typically high in
		fat and
	5.	Environmental problems of raising lots of protein-rich foods:
		a. feedlot beef and pork: animal waste leaches into soil, water & air
		b. grazed beef: loss of native plants, soil erosion, water depletion
		c. chicken farms: <u>same as "a"</u>
		d. free-range chicken: <u>loss of native plants</u>
		e. farmed fish: chemicals in feed, spread disease [changes fish nutrients]
		f. naturally-raised fish: kills non-food fish
		g. Dairy cows: growth hormones
		h. So what's a person to eat if vegan is not your choice?
В.	Pro	otein Deficiency: Global Hunger
	1.	1st cells to suffer- those replaced most often, including RBCs, plasma proteins & inner & outer skin cells. So what would you expect <u>early</u> symptoms to be?
	2.	two forms of PEM (p rotein e nergy m alnutrition) also called PCM
		a protein malnutrition
		b energy (calorie) malnutrition

VI <u>Digestion</u> of Protein

A. Denaturation: 1st part of chemical digestion
--

- 1. What is denaturation? uncoiling or distortion of protein's natural shape
- 2. What causes it? heat, alcohol, acids, bases, salts of heavy metals like silver or mercury
- 3. Example of denaturation in the body-
- 4. Example of denaturation in **food**-
- 5. Examples of using denaturation for medical uses:
 - a. Fever-
 - [1] What cause denaturation during a fever?
 - [2] Why might this be helpful?
 - [3] Why might a too-high fever be dangerous?
 - **b.** Cleaning a **thermometer** with alcohol. Why does this cut down on spread of infections?
 - **c.** If you swallow a salt of a heavy metal like mercury or silver, why is it dangerous?

B. Enzymatic digestion: 2nd part of chemical digestion

1.	After enzymatic digestion of the protein in a meal, what is the main thing that is
	absorbed into the blood?
2.	places making enzymes for protein digestion- stomach, pancreas, surface of small
	intestinal cells
3.	Where does enzymatic digestion of protein begin? &
	end?
4.	Where does enzymatic digestion of starch begin?

- 5. Where does enzymatic digestion of fructose begin & end?
- 6. Where does enzymatic digestion of triglycerides begin & end?
- 7. What is the difference between denaturation of food proteins & enzymatic digestion of food proteins?

- 8. Consider a breakfast of oatmeal & a little butter.
 - What, in this meal, needs to be enzymatically digested?
 - After enzymatic digestion of the oatmeal & butter, what is absorbed into villi?

VII Using Amino Acids

	VII Cong limito licus
	The Fate of an Amino Acid that was originally part of a <u>protein</u> in once it
	arrives at a
A.	if there's NOT enough glucose available to the cell, the AA will be stripped of its
	(which is excreted in) and the rest of it
	will be
	1. rearranged into for use by brain
	2. burned as fuel
B.	if there IS enough glucose available to the cell, the AA will be used to:
	1. make a the cell needs, like tissue proteins, muscles or enzymes
	2. make another the cell needs
	3. make other small nitrogen-containing compounds such as
	4. rearrange it & store it as
C.	Carla has been following a high protein a and low carbohydrate diet. Explain what
	would happen to much of the protein she is eating.
D.	Don has been eating a diet with plenty of foods containing carbohydrate and protein.
	What happens to the protein in his foods?
E.	Which can the body use to make glucose for the brain:
	a. liver glycogen b. muscle glycogen c. muscle protein d. fat in
	the body